Portable Forensics with Toby: A Raspberry Pi Toolkit

Whether teaching, investigating, or tinkering on the road, there’s an undeniable appeal to a device that’s self-contained, headless, and versatile enough to support forensic analysis, malware triage, and field acquisition. That idea became the seed for Toby — a Raspberry Pi Zero 2 W–based micro-rig that can be managed from an iPad or mobile device.

It started off with a “what could I do with at Raspberry Pi” and the final result: a fully functional, go-anywhere forensics toolkit that fits in the palm of your hand, carefully packed into a Grid-It travel kit and loaded with purpose.


Why Build Toby?

Toby wasn’t born from necessity. It came from a blend of curiosity, constraint, and the spirit of joyful overengineering. The goal wasn’t just to get Kali Linux running on a Pi — that’s been done. The challenge was in how much capability could be packed into a minimalist footprint without compromising on control, security, or style.

Some driving goals from the outset:

  • Headless-first: Must be operable via SSH, or VNC — no screen needed.
  • Kali-based: Full access to familiar forensic and pentest tooling.
  • Discreet and functional: Everything should be secure, practical, and stowable.
  • Modular connectivity: USB OTG, video capture, remote keyboard/mouse, and VPN support all needed to be viable.
  • Portable power: Run from a battery pack for field ops or demo use without dependency on AC power.

Hardware Selection

Raspberry Pi Zero 2 W

The Pi Zero 2 W hits a sweet spot. It has enough power to run full Kali and perform triage analysis, especially with swap and careful headless tuning. It supports USB OTG and can be powered over micro-USB, making it ideal for lightweight builds.

Grid-It Travel Kit: The Physical Layout

Instead of housing the components in a fixed enclosure, I opted for flexibility: a Grid-It organizer sleeve. It allows each cable and tool to remain accessible and secured via elastic straps — perfect for quick swaps or field reconfiguration.

The current loadout includes:

  • Raspberry Pi Zero 2 W 
  • HDMI mini to full adapter (for display recovery if needed)
  • USB micro to USB-C adapter combo (for powering Pi from laptop, iPad, or battery pack)
  • Anker battery pack (portable, long runtime)
  • Wireless keyboard (compact; paired via Bluetooth or USB receiver)
  • USB capture device (used for teaching, demoing webcam/VNC sessions)
  • Short USB OTG cable

The setup is light, self-contained, and TSA-friendly — a true digital go-bag for the forensically inclined.


Portable Power

Toby can be powered from the USB port of an iPad or from a battery pack or AC adapter, making it extremely flexible for field use.

Toby powered from iPad Pro
Toby powered from portable battery

Software

The OS is a clean, headless Kali Linux image configured specifically for ARM on the Pi Zero 2 W. Rather than trying to turn it into a desktop experience (even though it can), it boots fast, runs lean, and drops me directly into a terminal where I can get to work — whether over SSH or local keyboard.

Core Components:

Base image: Raspbian (Debian-based) with Kali tools manually installed

Metapackages:

  • kali-linux-forensic
  • kali-linux-desktop
  • core/default Kali utilities and command-line tools, incrementally layered until the system was functionally equivalent to a full Kali install (minus unnecessary services)

Additional Software Intstalled:

MalChela (CLI) running on Toby
Kali Forensics tools on Toby
MalChela GUI running on Toby

🔍 Toby-find: Your On-Device Forensics Cheat Sheet

One of Toby’s handiest features isn’t a tool you run—it’s a tool to remember tools. toby-find is a simple but powerful command-line helper built into the system. It gives you fast access to a curated list of CLI forensics tools available on Toby, along with short descriptions and usage tips.

It’s like having a searchable cheat sheet, always available—perfect for field use when memory is fuzzy or connectivity is limited.

toby-find utility

What It Does

When you run:

toby-find [keyword] 

it will search the help file for any tool(s) mentioning the keyword in name or description, and provide back a simple command syntax for each tool.

Example:

dwmetz@toby:~$ toby-find strings

Tool:        mstrings
Description: Extracts printable strings from files and maps them to MITRE ATT&CK techniques.
Example:     mstrings suspicious.exe
Category:    Malware
--------------------------------------------------
Tool:        strings_to_yara
Description: Generates a basic YARA rule from strings gathered manually or via mstrings.
Example:     strings_to_yara
Category:    Malware
--------------------------------------------------
Tool:        floss
Description: Extracts obfuscated strings from malware binaries.
Example:     floss suspicious.exe
Category:    Forensics
--------------------------------------------------
Tool:        rephrase
Description: Analyzes and reformats strings from documents or binaries.
Example:     rephrase input.txt
Category:    Forensics
--------------------------------------------------

Installed Tools:

Many of the tools are native to Kali, but some, including MalChela, were compiled manually or added through custom scripts. (Bold == MalChela tools or custom scripts.)

Tool NameDescription
batCat replacement with syntax highlighting and Git integration.
binwalkScans binaries for embedded files and executable code.
bulk_extractorExtracts artifacts like emails and credit card numbers from disk images.
combine_yaraCombines multiple YARA rule files into a single merged rule set.
dffDigital Forensics Framework with CLI and GUI modes.
digPerforms DNS lookups to retrieve domain IPs and records.
exiftoolDisplays metadata from images, PDFs, and other file types.
extract_samplesExtracts files from password-protected ZIP and RAR archives.
fileanalyzerAnalyzes file metadata, headers, and hashes to assist triage and detection.
fileminerRecursively scans a directory for files of interest based on extensions and type.
flossExtracts obfuscated strings from malware binaries.
foremostRecovers deleted files from disk images using file carving.
hashcheckComputes multiple cryptographic hashes and prints them side-by-side.
hashdeepGenerates and verifies file hashes for entire directories.
hashitQuickly generate MD5, SHA1, SHA256, and SHA512 hashes of a file.
htopInteractive system monitor showing real-time process usage.
ipcalcPerforms subnet calculations for IP ranges.
ipstatusShows interface configuration and public IP address.
malchelaMain CLI launcher for the MalChela forensic toolkit, with a menu-driven interface.
malhashLooks up file hashes using VirusTotal and MalwareBazaar.
moshSSH replacement that maintains session state during roaming.
mstringsExtracts printable strings from files and maps them to MITRE ATT&CK techniques.
mzcountTallies file extensions and MIME types in a directory.
mzhashRecursively hash all files in a directory using MD5.
ncduDisk usage analyzer with an interactive interface.
nmapPerforms host discovery and port scanning on a network.
nsrlqueryChecks file hashes against the National Software Reference Library.
p0fPerforms passive OS fingerprinting from live network traffic.
reglookupQueries Windows Registry hives from the command line.
regripperExtracts and parses registry artifacts using Perl-based plugins.
rephraseAnalyzes and reformats strings from documents or binaries.
rifiuti2Parses Windows Recycle Bin INFO2 files for forensic analysis.
rkhunterScans the system for known rootkits and suspicious behavior.
rsakeyfindSearches RAM dumps for RSA private key patterns.
safecopyRecovers data from damaged or unstable storage media.
samdump2Extracts password hashes from Windows SAM files.
scalpelPerforms file carving on disk images using headers/footers.
screenTerminal window manager similar to tmux.
scrounge-ntfsRecovers deleted files from NTFS file systems.
speedPerforms a network speed test from the command line.
sshStandard secure shell for remote command-line access.
ssdeepPerforms context-triggered piecewise hashing (fuzzy hashing).
strings_to_yaraGenerates a basic YARA rule from strings gathered manually or via mstrings.
tcpdumpCaptures and displays raw network packets in real time.
tmuxTerminal multiplexer for managing multiple sessions.
toby-findLists available tools and examples installed on the Toby system.
truecrackAttempts to brute-force passwords for TrueCrypt volumes.
tsharkTerminal version of Wireshark for packet capture and filtering.
undbxExtracts messages from Outlook Express DBX mailboxes.
unarExtracts files from .rar and other archives.
unhideDetects hidden processes and tasks in Linux systems.
upxCompresses or decompresses executable files.
uptimeDisplays system uptime and load averages.
vinettoParses thumbnail caches from Internet Explorer and Firefox.
vnc-offStops the running VNC session.
vnc-onStarts a VNC server session for remote desktop access.
volatility3Memory forensics framework for analyzing RAM dumps.
vpn-offStops the active OpenVPN session.
vpn-onStarts the OpenVPN client using the configured lab connection.
winregfsMounts Windows Registry hives as a read-only virtual filesystem.
xmountConverts between forensic image formats (e.g. EWF to RAW).
xmzhashRecursively hash all files in a directory using MD5, SHA1, and SHA256.

This setup enables lightweight static analysis, file triage, memory inspection, and network capture — all from a Pi that fits in a Altoids case.


Build Process (Step by Step)

1. Flashing and First Boot

Using the Raspberry Pi Imager, I selected the ARM64 Raspbian image, added SSH and Wi-Fi credentials, and flashed the SD card.

Tip: The “advanced” options in Raspberry Pi Imager let you configure headless behavior up front, saving time on first boot.

2. Swap, Networking, and System Setup

The Pi Zero 2 W is modest on RAM — just 512MB — so swap is essential. I configured a persistent 2GB file-based swap at /swapfile, which gave the system enough breathing room to compile, run heavier tools, and avoid out-of-memory crashes during extended sessions.

Networking is Wi-Fi-only, so multiple SSIDs were configured using wpa_supplicant.conf for home and hotspot SSIDs. VPN has also been configured for remote access to my home malware lab.

3. Building and Installing MalChela

I cloned the full MalChela repository directly and compiled tool-by-tool:

cd MalChela
for tool in fileanalyzer mstrings hashcheck extract_samples ...; do
  cargo build --release -p $tool
done

4. Screen Choices

In addition to headless-mode, you can use a typical keyboard/monitor/mouse setup, for either cli mode or full gui.

The Pi Zero 2 W supports HDMI output via its mini-HDMI port, so you can plug it directly into any monitor or TV using a mini-HDMI to HDMI cable or adapter. For true portability, I needed something more flexible that didn’t require me packing a separate screen.

Toby running in desktop mode

To solve this, I added a compact USB-based HDMI capture device to the kit. It effectively turns any mobile device into a live monitor. By connecting Toby’s HDMI out to the capture card and plugging it into my iPad or iPhone,  I can preview the Pi’s screen on the go. This setup also works with OBS, QuickTime, or dedicated capture apps for recording demos or screen sessions — handy for teaching or documenting tool usage.

Input is handled with a small wireless Bluetooth keyboard, which pairs cleanly with Toby for direct control. This combo — Pi output through HDMI capture and keyboard input via Bluetooth — lets me interact with Toby completely untethered.

In practice, I rarely need the GUI. But when I do, this setup lets me bring it up quickly without dragging along a dedicated screen.


Final Result: What Toby Can Do

Toby isn’t just a cute Pi rig with a name. It’s a real tool, and its current feature set reflects that.

💼 Mobile Forensics Platform

  • Mount, triage, and scan USB drives with fileanalyzer
  • Run YARA scans and generate custom rules from strings
  • Look up hashes via VirusTotal, MalwareBazaar, and NSRL
  • Analyze memory dumps with Volatility 3 (including plugin selection)
  • Run offline IOCs scans via mstrings or custom shell scripts

What’s Next for Toby

Building Toby was an exercise in maximizing power in a small footprint through deliberate choices. For educators, students, and curious tinkerers, Toby proves that hands-on, portable, and fun learning and teaching forensics can be achieved. If you’re building your own, start with what you have: a Pi, a Grid-It, and your imagination. Sometimes, the best tools aren’t the ones with the biggest screens or fastest chips—they’re the ones you have with you.

I’m already thinking about upgrades. One in consideration is a case upgrade, a true lunchbox-style metal enclosure — something retro and rugged, with a small screen inside the lid.

Let me know in the comments if you’d like a public release of toby-find as an add-on to install for Kali builds for forensics and malware analysis.

Lego Rackmount Solution for Mini Computer Stacking

I have an obsession with mini computers. I’ve got a number of NUCs as lab devices, and some off brand models too. There is also not quite a bakery’s worth of Raspberry Pi’s. Having small purpose driven appliances works perfectly for how my lab setup has evolved. As needs and missions change, different components can be repurposed and built into something else. In a way it’s like playing with Legos; another proclivity I’ve held on to from my earliest days as a tinkerer.

One of my favorite (and ever evolving) projects has been the Lack Rack. I’d already had a set of Raspberry Pi’s rack mounted.

As I was rewiring some other components, I rack mounted 2 NUCs and improvised on a third pc. There was another mini computer that I was looking to mount, but the dimensions weren’t compatible with the rack hardware. That led to a separate project that worked out so well I figured I’d share it.

There’s really only one component to the build, though you could use multiple kits depending on how many levels (or computers) you want to accommodate. The kit isn’t Lego brand, but it’s essentially interchangeable with other Lego pieces.

The (4) base plates are 6×6 and come with (30) 2 inch risers. As such the shelves can be 2 or 4 inches between. I used the risers not just for the corner posts, but also on the sides of the devices to fix them in position. Besides mini computers it was very easy to accommodate a 5-port switch for networking.

If you’re looking for an easy way to rack and stack a few mini computers, and perhaps want to add some Lego accoutrements, this could be just what you need.

Upcoming MAGNET Webinar: Magnet2Go

On August 2, join me on behalf of Magnet Forensics, to learn how to build your own ‘Windows to Go’ drive to support offline collections with Magnet OUTRIDER & Magnet ACQUIRE, as well as free tools for live collections like Magnet RESPONSE, Magnet DumpIt, & Magnet RAM Capture. Registration link below.

If you’re looking for the hard drive referrenced in the talk: [amazon] Samsung T7 SSD

Designing Internet Access for Compromised Systems

Virtual machines are a godsend when it comes to malware analysis. Granted there a many malware samples that may have capabilities to detect if they are operating in a virtualized environment and thus respond differently. Many, though not all of these, can be mitigated by patching the malware binary, or tricking it into a false result before needing to look at the sample on a bare-metal system.

When I’m looking at a piece of malware, I’ll run it through a number of environments, gradually permitting external access once I have an idea of what the malware’s capabilities look like. Initially when detonating samples, I’ll have the target endpoint and a REMnux virtual machine running inetsim operating on an isolated network. Rather than re-invent the wheel, here’s a solid article on setting up an isolated network on VMware ESXi.

At some point I want to enable access to the internet to observe command and control (C2) and any dropper activity. I don’t want there to be an avenue for the malware to be able to interact with any other assets whether on my lab network, or outside it. One way to solve this would be networking and introducing a router to broker the network access. It’s been a while since I had my CCNA and I had some hesitations about getting it right without impacting other services in a very internet dependent household. What I wound up going with instead is a completely separate internet connection for the malware network utilizing a LTE hot-spot.

I run my lab environment on ESXi environment using an Intel NUC. The model I have only has one onboard NIC. The easiest way to add another physical adapter was with a USB Gigabit Ethernet adapter for a measly $13 on amazon. ESXi will not detect this adapter out of the box. Follow the process on this article to configure the USB network adapter for ESXi. You will need to download the USB Network Native Driver for ESXi. Be sure to select the appropriate version to match the version of ESXi you’re running. I’m sure there’s an interesting story on why VMWare calls these ‘Flings’ but that knowledge escapes me.

If all goes as it should, and doesn’t it always, you should see second physical adapter (vusb0) in the ESXi console.

USB network adapter shown as vusb0

For the secondary internet access, I wound up going with a Netgear LM1200 LTE Hotspot. I like this device because you can configure it to use an LTE connection as a backup if your primary wired internet service is down. I may utilize that in the future but for now it’s only used on the malware network without any connection to the primary LAN. Based on my current cellular plan I was able to add the minimum hotspot plan for $10/mo. A worthy investment for me for the peace of mind that I’m (less likely) to compromise the rest of my network when experimenting with live malware. It will also (one would hope) keep my home IP off any watchlists for malware beacons, or anyone else tracking where different samples are detonated from. As Mr. Heller sagely said, “Just because you’re paranoid doesn’t mean they aren’t after you.”

The same setup could be very useful for responding to compromises in isolated enterprise or manufacturing environments. If you need to have the device access the internet (maybe to upload evidence to you Forensics Service Provider (FSP)), but don’t want to maintain a connection to the corporate LAN due to suspected compromise, this solution would work for that.

Once I had the hotspot up and running, the LAN connection on the hotpot gets connected to the USB ethernet adapter. Then go back to ESXi to the isolated network you created before, the one that you were warned “NO UPLINK”, and use the ‘Add uplink’ function and add the vusb0 device. You can adjust the settings on the LTE hotspot for DHCP if needed as long as the device is in Router (not Bridged) mode.

Malware network with external internet access

That’s it. Now when the infected computer needs to get to the internet, all traffic will go through the LTE connection and the infected systems remain isolated from the primary network.

Release the hounds and observe

If I’m in a situation where I absolutely need to run the malware on a bare-metal system I can connect using the LTE modem without threat to any of the other physical systems.