CSIRT-Collect USB

CSIRT-Collect USB can be found in the main repository for CSIRT-Collect. CSIRT-Collect is a PowerShell script to collect memory and (triage) disk forensics for incident response investigations.

CSIRT-Collect USB is designed to run directly from a USB device. While a network deployment certainly supports automation, as an Incident Responder I can think of several examples where that wouldn’t be an option:

  • An air-gapped manufacturing environment
  • Hospital/Medical Environments
  • Ransomware incidents when the assets have been detached from the network

Preparation is the first phase of the Incident Response lifecycle. (PICERL) Once you’ve tested and/or adapted the collection for your environment, consider prepping a handful of drives and having them pre-deployed to sites where you’re likely to need them.

The Setup

First off you’re going to need a high-capacity USB device. Larger sized flash drives will work. Personally I’m a fan of Samsung (T series) SSD drives, both for their size and their write speeds during acquisitions.

On the root of the USB device:

  • A (initially empty) folder named ‘Collections’
  • KAPE directory from default KAPE installation
  • EDD.exe in \KAPE\Modules\bin\EDD (Encrypted Disk Detector)
  • CSIRT-Collect_USB.ps1
  • MRC.exe (Magnet RAM Capture)

Launch

To run the script, open an elevated PowerShell prompt and browse to the USB device. Then simply

.\CSIRT-Collect_USB.ps1
CSIRT-Collect_USB.ps1 starting

What it Captures

The first process the script runs is Magnet RAM Capture. Once the RAM has been captured, the windows build (profile) is captured. The RAM image and the build info are named to reflect the asset hostname being collected.

The next process is the KAPE Triage collection. Host artifacts are acquired and then assembled as a .vhdx (portable hard disk) image. After the KAPE Targets portion completes, KAPE calls the Encrypted Disk Detector module which checks the local physical drives on a system for TrueCrypt, PGP, VeraCrypt, SafeBoot, or Bitlocker encrypted volumes. This information is saved into the Collections directory, as well as displayed to the responder to identify other volumes that may need to be collected while the system is live.

Lastly, if BitLocker is enabled for the OS drive the script will capture that information as well and back-up the recovery key.

Disk Encryption Check

Collection Contents

Inside the Collections folder, a subfolder will be created for each asset collected. The size of the USB device will determine how many collections can be captured before the results need to be offloaded.

The \Collections\%hostname% directory will include:

  • Console log capturing all KAPE targets activity
  • .vhdx of the host artifacts
  • collection complete date/time .txt
  • Memory acquisition .raw
  • Windows profile (build information) .txt

In the \Collections\%hostname%\Decrypt folder you will find

  • console log for KAPE modules (EDD)
  • recovery key for BitLocker (C) volume .txt
  • Live Response directory with the output of EDD .txt

###

https://github.com/dwmetz/CSIRT-Collect

###

Forensic Imaging Station – Steampunk Edition

I’ve worked remotely for the past 6 years which means I spend a lot of time in my home office.  Last year we moved into a new house with much better space for my office, and I’ve been shaping it more and more to my tastes.

I do a lot of forensic imaging. I’ve got a pretty basic but rock solid setup that works for me (see Forensic Imaging a Microsoft Surface Pro).  Since I use it frequently I’m hesitant to put it away, but at the same point I don’t like looking at a pile of wires and devices when not in use. That brings us to the latest home office update, the Forensic Imaging Station (Steampunk Edition).

For this project I grabbed a small wooden box from Hobby Lobby.  A good cigar box will also work.  That was going to be my first choice but the only spare box I had on hand said “Corona” on the face and… you know. This box looks nice but it’s composed of mostly particle board, so go slow drilling.

I drilled four holes in the box. A 1/2 inch hole on the front face under the locking clasp for the USB-C cable, and three 5/8 inch holes – 2 on the side and one on the back, to accommodate the rest.

Inside the box I’ve arranged a USB hub connecting:

  • Paladin flash drive
  • External WD hard drive 
  • Keyboard (USB)
  • RF dongle for mouse.
  • Pass through for “universal” laptop power adapter
Cheap wood makes for messy holes.

This box had plenty of space to arrange the components. The laptop power adapter comes in the back of the box and then back out on the side.  The USB connector for the hub is also passed through the side. The cable for the keyboard passes through the front.

The finished set-up

The setup is completed with an Azio Retro Compact keyboard, (with replacement copper-edged keys) and a sort of matching mouse.

When it’s time to image, just sit the laptop on top, connect the USB cable and power, and you’re good to go.